Goldie Ranks of Primitive Ideals and Indexes of Equivariant Azumaya Algebras

نویسندگان

چکیده

Let $\mathfrak{g}$ be a semisimple Lie algebra. We establish new relation between the Goldie rank of primitive ideal $\mathcal{J}\subset U(\mathfrak{g})$ and dimension corresponding irreducible representation $V$ an appropriate finite W-algebra. Namely, we show that $\operatorname{Grk}(\mathcal{J}) \leqslant \dim V/d_V$, where $d_V$ is index suitable equivariant Azumaya algebra on homogeneous space. also compute in theoretic terms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motives of Azumaya Algebras

We study the slice filtration for the K-theory of a sheaf of Azumaya algebras A, and for the motive of a Severi-Brauer variety, the latter in the case of a central simple algebra of prime degree over a field. Using the Beilinson-Lichtenbaum conjecture, we apply our results to show the vanishing of SK2(A) for a central simple algebra A of square-free index (prime to the characteristic). This pro...

متن کامل

Deformations of Azumaya Algebras

In this paper we compute the deformation theory of a special class of algebras, namely of Azumaya algebras on a manifold (C or complex analytic). Deformation theory of associative algebras was initiated by Gerstenhaber in [G]. A deformation of an associative algebra A over an Artinian ring a is an a-linear associative algebra structure on A⊗ a such that, for the maximal ideal m of a, A ⊗ m is a...

متن کامل

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Ideals and primitive elements of some relatively free Lie algebras

Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2021

ISSN: ['1609-4514', '1609-3321']

DOI: https://doi.org/10.17323/1609-4514-2021-21-2-383-399